miércoles, 15 de abril de 2009

TIPOS DE MEMORIA RAM


RAM : Siglas de Random Access Memory, un tipo de memoria a la que se puede acceder de forma aleatoria; esto es, se puede acceder a cualquier byte de la memoria sin pasar por los bytes precedentes. RAM es el tipo más común de memoria en las computadoras y en otros dispositivos, tales como las impresoras.


Hay dos tipos básicos de RAM:


DRAM (Dynamic RAM), RAM dinámica
SRAM (Static RAM), RAM estática


Los dos tipos difieren en la tecnología que usan para almacenar los datos. La RAM dinámica necesita ser refrescada cientos de veces por segundo, mientras que la RAM estática no necesita ser refrescada tan frecuentemente, lo que la hace más rápida, pero también más cara que la RAM dinámica. Ambos tipos son volátiles, lo que significa que pueden perder su contenido cuando se desconecta la alimentación.


En el lenguaje común, el término RAM es sinónimo de memoria principal, la memoria disponible para programas. En contraste, ROM (Read Only Memory) se refiere a la memoria especial generalmente usada para almacenar programas que realizan tareas de arranque de la máquina y de diagnósticos. La mayoría de los computadores personales tienen una pequeña cantidad de ROM (algunos Kbytes). De hecho, ambos tipos de memoria ( ROM y RAM )permiten acceso aleatorio. Sin embargo, para ser precisos, hay que referirse a la memoria RAM como memoria de lectura y escritura, y a la memoria ROM como memoria de solo lectura.


Se habla de RAM como memoria volátil, mientras que ROM es memoria no-volátil.


La mayoría de los computadores personales contienen una pequeña cantidad de ROM que almacena programas críticos tales como aquellos que permiten arrancar la máquina (BIOS CMOS). Además, las ROMs son usadas de forma generalizada en calculadoras y dispositivos periféricos tales como impresoras laser, cuyas 'fonts' estan almacenadas en ROMs.


Tipos de memoria RAM:


VRAM :
Siglas de Vídeo RAM, una memoria de propósito especial usada por los adaptadores de vídeo. A diferencia de la convencional memoria RAM, la VRAM puede ser accedida por dos diferentes dispositivos de forma simultánea. Esto permite que un monitor pueda acceder a la VRAM para las actualizaciones de la pantalla al mismo tiempo que un procesador gráfico suministra nuevos datos. VRAM permite mejores rendimientos gráficos aunque es más cara que la una RAM normal.


SIMM :
Siglas de Single In line Memory Module, un tipo de encapsulado consistente en una pequeña placa de circuito impreso que almacena chips de memoria, y que se inserta en un zócalo SIMM en la placa madre o en la placa de memoria. Los SIMMs son más fáciles de instalar que los antiguos chips de memoria individuales, y a diferencia de ellos son medidos en bytes en lugar de bits.
El primer formato que se hizo popular en los computadores personales tenía 3.5" de largo y usaba un conector de 32 pins. Un formato más largo de 4.25", que usa 72 contactos y puede almacenar hasta 64 megabytes de RAM es actualmente el más frecuente.
Un PC usa tanto memoria de nueve bits (ocho bits y un bit de paridad, en 9 chips de memori RAM dinámica) como memoria de ocho bits sin paridad. En el primer caso los ocho primeros son para datos y el noveno es para el chequeo de paridad.


DIMM :
Siglas de Dual In line Memory Module, un tipo de encapsulado, consistente en una pequeña placa de circuito impreso que almacena chips de memoria, que se inserta en un zócalo DIMM en la placa madre y usa generalmente un conector de 168 contactos.


DIP :
Siglas de Dual In line Package, un tipo de encapsulado consistente en almacenar un chip de memoria en una caja rectangular con dos filas de pines de conexión en cada lado.


RAM Disk :
Se refiere a la RAM que ha sido configurada para simular un disco duro. Se puede acceder a los ficheros de un RAM disk de la misma forma en la que se acceden a los de un disco duro. Sin embargo, los RAM disk son aproximadamente miles de veces más rápidos que los discos duros, y son particularmente útiles para aplicaciones que precisan de frecuentes accesos a disco.
Dado que están constituidos por RAM normal. los RAM disk pierden su contenido una vez que la computadora es apagada. Para usar los RAM Disk se precisa copiar los ficheros desde un disco duro real al inicio de la sesión y copiarlos de nuevo al disco duro antes de apagar la máquina. Observe que en el caso de fallo de alimentación eléctrica, se perderán los datos que huviera en el RAM disk. El sistema operativo DOS permite convertir la memoria extendida en un RAM Disk por medio del comando VDISK, siglas de Virtual DISK, otro nombre de los RAM Disks.


Memoria Caché ó RAM Caché :
Un caché es un sistema especial de almacenamiento de alta velocidad. Puede ser tanto un área reservada de la memoria principal como un dispositivo de almacenamiento de alta velocidad independiente. Hay dos tipos de caché frecuentemente usados en las computadoras personales: memoria caché y caché de disco. Una memoria caché, llamada tambien a veces almacenamiento caché ó RAM caché, es una parte de memoria RAM estática de alta velocidad (SRAM) más que la lenta y barata RAM dinámica (DRAM) usada como memoria principal. La memoria caché es efectiva dado que los programas acceden una y otra vez a los mismos datos o instrucciones. Guardando esta información en SRAM, la computadora evita acceder a la lenta DRAM.
Cuando un dato es encontrado en el caché, se dice que se ha producido un impacto (hit), siendo un caché juzgado por su tasa de impactos (hit rate). Los sistemas de memoria caché usan una tecnología conocida por caché inteligente en el cual el sistema puede reconocer cierto tipo de datos usados frecuentemente. Las estrategias para determinar qué información debe de ser puesta en el caché constituyen uno de los problemas más interesantes en la ciencia de las computadoras. Algunas memorias caché están construidas en la arquitectura de los microprocesadores. Por ejemplo, el procesador Pentium II tiene una caché L2 de 512 Kbytes.
El caché de disco trabaja sobre los mismos principios que la memoria caché, pero en lugar de usar SRAM de alta velocidad, usa la convencional memoria principal. Los datos más recientes del disco duro a los que se ha accedido (así como los sectores adyacentes) se almacenan en un buffer de memoria. Cuando el programa necesita acceder a datos del disco, lo primero que comprueba es la caché del disco para ver si los datos ya estan ahí. La caché de disco puede mejorar drásticamente el rendimiento de las aplicaciones, dado que acceder a un byte de datos en RAM puede ser miles de veces más rápido que acceder a un byte del disco duro.


SRAM:
Siglas de Static Random Access Memory, es un tipo de memoria que es más rápida y fiable que la más común DRAM (Dynamic RAM). El término estática viene derivado del hecho que necesita ser refrescada menos veces que la RAM dinámica.
Los chips de RAM estática tienen tiempos de acceso del orden de 10 a 30 nanosegundos, mientras que las RAM dinámicas están por encima de 30, y las memorias bipolares y ECL se encuentran por debajo de 10 nanosegundos.
Un bit de RAM estática se construye con un --- como circuito flip-flop que permite que la corriente fluya de un lado a otro basándose en cual de los dos transistores es activado. Las RAM estáticas no precisan de circuiteria de refresco como sucede con las RAMs dinámicas, pero precisan más espacio y usan mas energía. La SRAM, debido a su alta velocidad, es usada como memoria caché.


DRAM:
Siglas de Dynamic RAM, un tipo de memoria de gran capacidad pero que precisa ser constantemente refrescada (re-energizada) o perdería su contenido. Generalmente usa un transistor y un condensador para representar un bit Los condensadores debe de ser energizados cientos de veces por segundo para mantener las cargas. A diferencia de los chips firmware (ROMs, PROMs, etc.) las dos principales variaciones de RAM (dinámica y estática) pierden su contenido cuando se desconectan de la alimentación. Contrasta con la RAM estática.
Algunas veces en los anuncios de memorias, la RAM dinámica se indica erróneamente como un tipo de encapsulado; por ejemplo "se venden DRAMs, SIMMs y SIPs", cuando deberia decirse "DIPs, SIMMs y SIPs" los tres tipos de encapsulado típicos para almacenar chips de RAM dinámica.
Tambien algunas veces el término RAM (Random Access Memory) es utilizado para referirse a la DRAM y distinguirla de la RAM estática (SRAM) que es más rápida y más estable que la RAM dinámica, pero que requiere más energía y es más cara.


SDRAM:
Siglas de Synchronous DRAM, DRAM síncrona, un tipo de memoria RAM dinámica que es casi un 20% más rápida que la RAM EDO. SDRAM entrelaza dos o más matrices de memoria interna de tal forma que mientras que se está accediendo a una matriz, la siguiente se está preparando para el acceso. SDRAM-II es tecnología SDRAM más rápida esperada para 1998. También conocido como DDR DRAM o DDR SDRAM (Double Data Rate DRAM o SDRAM), permite leer y escribir datos a dos veces la velocidad bús.


FPM:
Siglas de Fast Page Mode, memoria en modo paginado, el diseño más comun de chips de RAM dinámica. El acceso a los bits de memoria se realiza por medio de coordenadas, fila y columna. Antes del modo paginado, era leido pulsando la fila y la columna de las líneas seleccionadas. Con el modo pagina, la fila se selecciona solo una vez para todas las columnas (bits) dentro de la fila, dando como resultado un rápido acceso. La memoria en modo paginado tambien es llamada memoria de modo Fast Page o memoria FPM, FPM RAM, FPM DRAM. El término "fast" fué añadido cuando los más nuevos chips empezaron a correr a 100 nanoseconds e incluso más.


EDO:
Siglas de Extended Data Output, un tipo de chip de RAM dinámica que mejora el rendimiento del modo de memoria Fast Page alrededor de un 10%. Al ser un subconjunto de Fast Page, puede ser substituida por chips de modo Fast Page.
Sin embargo, si el controlador de memoria no está diseñado para los más rápidos chips EDO, el rendimiento será el mismo que en el modo Fast Page.
EDO elimina los estados de espera manteniendo activo el buffer de salida hasta que comienza el próximo ciclo.
BEDO (Burst EDO) es un tipo más rápido de EDO que mejora la velocidad usando un contador de dirección para las siguientes direcciones y un estado 'pipeline' que solapa las operaciones.


PB SRAM:
Siglas de Pipeline Burst SRAM. Se llama 'pipeline' a una categoría de técnicas que proporcionan un proceso simultáneo, o en paralelo dentro de la computadora, y se refiere a las operaciones de solapamiento moviendo datos o instrucciones en una 'tuberia' conceptual con todas las fases del 'pipe' procesando simultáneamente. Por ejemplo, mientras una instrucción se está ejecutándo, la computadora está decodificando la siguiente instrucción. En procesadores vectoriales, pueden procesarse simultáneamente varios pasos de operaciones de coma flotante
La PB SRAM trabaja de esta forma y se mueve en velocidades de entre 4 y 8 nanosegundos.




ECC:
Memoria con corrección de errores. Puede ser de cualquier tipo, aunque sobre todo EDO-ECC o SDRAM-ECC. Detecta errores de datos y los corrige; para aplicaciones realmente críticas. Usada en servidores y mainframes.


BEDO:
(Burst-EDO): una evolución de la EDO, que envía ciertos datos en "ráfagas". Poco extendida, compite en prestaciones con la SDRAM.



RIMM:
Acrónimo de Rambus Inline Memory Module, designa a los módulos de memoria RAM que utilizan una tecnología denominada RDRAM, desarrollada por Rambus Inc. a mediados de los años 1990 con el fin de introducir un módulo de memoria con niveles de rendimiento muy superiores a los módulos de memoria SDRAM de 100 Mhz y 133 Mhz disponibles en aquellos años.
Los módulos RIMM RDRAM cuentan con 184 pins y debido a sus altas frecuencias de trabajo requieren de difusores de calor consistentes en una placa metálica que recubre los chips del módulo. Se basan en un bus de datos de 16 bits y están disponibles en velocidades de 300MHz (PC-600), 356 Mhz (PC-700), 400 Mhz (PC-800) y 533 Mhz (PC-1066) que por su pobre bus de 16 bits tenía un rendimiento 4 veces menor que la DDR. La RIMM de 533MHz tiene un rendimiento similar al de un módulo DDR133, a pesar de que sus latencias son 10 veces peores que la DDR.
Inicialmente los módulos RIMM fueron introducidos para su uso en servidores basados en Intel Pentium III. Rambus no manufactura módulos RIMM si no que tiene un sistema de licencias para que estos sean manufacturados por terceros siendo Samsung el principal fabricante de éstos.
A pesar de tener la tecnología RDRAM niveles de rendimiento muy superiores a la tecnología SDRAM y las primeras generaciones de DDR RAM, debido al alto costo de esta tecnología no han tenido gran aceptación en el mercado de PC. Su momento álgido tuvo lugar durante el periodo de introducción del Pentium 4 para el cual se diseñaron las primeras placas base, pero Intel ante la necesidad de lanzar equipos más económicos decidió lanzar placas base con soporte para SDRAM y más adelante para DDR RAM desplazando esta última tecnología a los módulos RIMM del mercado.

SLOTS DE EXPANSION







Un slot (también llamado slot de expansión o ranura de expansión) es un elemento de la placa base de un ordenador que permite conectar a ésta una tarjeta adaptadora adicional o de expansión, la cual suele realizar funciones de control de dispositivos periféricos adicionales, tales como monitores, impresoras o unidades de disco. En las tarjetas madre del tipo LPX los slots de expansión no se encuentran sobre la placa sino en un conector especial denominado riser card.
Los slots están conectados entre sí. Un ordenador personal dispone generalmente de ocho unidades, aunque puede llegar hasta doce.


Tipos de slots


XT: Es uno de los slots más antiguos trabaja con una velocidad muy inferior a los slots modernos (8 bits) y a una frecuencia de 4.77 [MHz].


AGP: Al puerto AGP se conecta la tarjeta de video y se usa únicamente para tarjetas aceleradoras 3D en ordenadores muy potentes y accesibles; está siendo reemplazado por el slot PCI Express que es más potente. AGP quiere decir Advanced Graphics Port (Puerto de gráficos avanzados). Hay cuatro tipos, AGP (si no se especifica nada más es 1x), AGP 2x, AGP 4x y AGP 8x.


ISA: El slot ISA fue reemplazado desde el año 2000 por el slot PCI. Los componentes diseñados para el slot ISA eran muy grandes y fueron de los primeros slots en usarse en los ordenadores personales. Hoy en día no se fabrican slots ISA. Los puertos ISA son ranuras de expansión actualmente en desuso, se incluyeron estos puertos hasta los primeros modelos del Pentium III. NOTA: El slot ISA ( Industry Standard Arquitecture) es un tipo de slot o ranura de expansión de 16 bits capaz de ofrecer hasta 16 MB/s a 8 MHz.


VESA: En 1992 el comité VESA de la empresa NEC crea este slot para dar soporte a las nuevas placas de video. Es fácilmente identificable en la placa base debido a que consiste de un ISA con una extensión color marrón, trabaja a 32 bits y con una frecuencia que varia desde 33 [MHz] a 40 [MHz]. Tiene 22,3[cm] de largo (ISA+EXTENSION) 1,4[cm] de alto, 0,9[cm] de ancho (ISA) Y 0,8[cm] de ancho (EXTENSION).


PCI: Un Peripheral Component Interconnect (PCI, "Interconexión de Componentes Periféricos") consiste en un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en PC, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpers externos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaron tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología "plug and play". Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.
















SLOTS DE EXPANSION

TIPOS DE PROCESADORES




Los procesadores CISC (Complex Instruction Set Computer) tienen un repertorio con un número de instrucciones alto (200-300); estas instrucciones además son más complejas que las de RISC, con lo que la circuitería necesaria para decodificación y secuenciación también aumenta, y la velocidad del proceso disminuye. Como ventaja, tenemos que se necesitan menos instrucciones para ejecutar una tarea. Además, el formato de las instrucciones es bastante variable (es decir, hay bastantes formatos). Además, el diseño hace que el procesador tenga que realizar constantes accesos a memoria.




Los procesadores RISC (Reduced Instruction Set Computer) tienen características opuestas a los CISC. Su juego de instrucciones es más reducido (menos de 128), y las instrucciones son más sencillas (con lo que se necesitarán más instrucciones para ejecutar una tarea). El formato de instrucciones es fijo (o serán pocos formatos), con lo que el control del hardware es más sencillo y se facilita la colocación de las instrucciones en la memoria, lo que implica que los accesos a la memoria se aceleren. Por otra parte, estos accesos a memoria son menos frecuentes ya que el procesador posee un mayor número de registros. Estos procesadores son los que están presentes en las estaciones de trabajo. Como ejemplos podemos citar los procesadores ALPHA de Digital Equipment, y los SuperSPARC y MicroSPARC de Sun Microsystems y Texas Instruments.




Relacionada con los conceptos RISC y CISC está la técnica de segmentación ("pipeline"); esta técnica consiste en dividir la ejecución de la instrucción en bloques independientes que se ejecutan en paralelo. Es más eficiente para los procesadores RISC, aunque también se implementa en CISC. Para incrementar el rendimiento del procesador se debe bucar instrucciones ejecutables en paralelo. El sistema de carga de instrucciones debe analizar la secuencia de instrucciones que entran al procesador y buscar instrucciones ejecutables en paralelo asi como diseñar un control que tenga en cuenta posibles dependencias de datos entre las instrucciones a ejecutar en paralelo. Esto hace que el hardware empiece a complicarse

miércoles, 1 de abril de 2009

ejercicio













capacitores

Capacitores cerámicos

El dieléctrico utilizado por estos capacitores es la cerámica, siendo el material más utilizado el dióxido de titanio. Este material confiere al condensador grandes inestabilidades por lo que en base al material se pueden diferenciar dos grupos:

Grupo I: caracterizados por una alta estabilidad, con un coeficiente de temperatura bien definido y casi constante.

Grupo II: su coeficiente de temperatura no está prácticamente definido y además de presentar características no lineales, su capacidad varía considerablemente con la temperatura, la tensión y el tiempo de funcionamiento. Se caracterizan por su elevada permitividad.

Las altas constantes dieléctricas características de las cerámicas permiten amplias posibilidades de diseño mecánico y eléctrico.

Capacitores de plástico

Estos capacitores se caracterizan por las altas resistencias de aislamiento y elevadas tempeeraturas de funcionamiento.
Según el proceso de fabricación podemos diferenciar entre los de tipo k y tipo MK, que se distinguen por el material de sus armaduras (metal en el primer caso y metal vaporizado en el segundo).


Según el dieléctrico usado se pueden distinguir estos tipos comerciales:

KS: styroflex, constituidos por láminas de metal y poliestireno como dieléctrico.

KP: formados por láminas de metal y dieléctrico de polipropileno.

MKP: dieléctrico de polipropileno y armaduras de metal vaporizado.

MKY: dieléctrco de polipropileno de gran calidad y láminas de metal vaporizado.

MKT: láminas de metal vaporizado y dieléctrico de teraftalato de polietileno (poliéster).

MKC: makrofol, metal vaporizado para las armaduras y policarbonato para el dieléctrico.

A nivel orientativo estas pueden ser las características típicas de los capacitores de plástico:

TIPO
CAPACIDAD
TOLERANCIA
TENSION
TEMPERATURA

KS
2pF-330nF
+/-0,5% +/-5%
25V-630V
-55ºC-70ºC

KP
2pF-100nF
+/-1% +/-5%
63V-630V
-55ºC-85ºC

MKP
1,5nF-4700nF
+/-5% +/-20%
0,25KV-40KV
-40ºC-85ºC

MKY
100nF-1000nF
+/-1% +/-5%
0,25KV-40KV
-55ºC-85ºC

MKT
680pF-0,01mF
+/-5% +/-20%
25V-630V
-55ºC-100ºC

MKC
1nF-1000nF
+/-5% +/-20%
25V-630V
-55ºC-100ºC


Capacitores de mica

El dieléctrico utilizado en este tipo de capacitores es la mica o silicato de aluminio y potasio y se caracterizan por bajas pérdidas, ancho rango de frecuencias y alta estabilidad con la temperatura y el tiempo.

Capacitores electrolíticos

En estos capacitores una de las armaduras es de metal mientras que la otra está constituida por un conductor iónico o electrolito. Presentan unos altos valores capacitivos en relación al tamaño y en la mayoría de los casos aparecen polarizados.


Podemos distinguir dos tipos:

Electrolíticos de aluminio: la armadura metálica es de aluminio y el electrolito de tetraborato armónico.

Electrolíticos de tántalo: el dieléctrico está constituido por óxido de tántalo y nos encontramos con mayores valores capacitivos que los anteriores para un mismo tamaño. Por otra parte las tensiones nominales que soportan son menores que los de aluminio y su coste es algo más elevado.

Capacitores de doble capa eléctrica

Estos capacitores también se conocen como supercapacitores o CAEV debido a la gran capacidad que tienen por unidad de volumen. Se diferencian de los capacitores convencionales en que no usan dieléctrico por lo que son muy delgados. Las características eléctricas más significativas desde el punto de su aplicación como fuente acumulada de energía son: altos valores capacitivos para reducidos tamaños, corriente de fugas muy baja, alta resistencia serie, y pequeños valores de tensión.


CAPACITORES VARIABLES

Estos capacitores presentan una capacidad que podemos variar entre ciertos límites. Igual que pasa con las resistencias podemos distinguir entre capacitores variables, su aplicación conlleva la variación con cierta frecuencia (por ejemplo sintonizadores); y capacitores ajustables o trimmers, que normalmente son ajustados una sola vez (aplicaciones de reparación y puesta a punto).
La variación de la capacidad se lleva a cabo mediante el desplazamiento mecánico entre las placas enfrentadas. La relación con que varían su capacidad respecto al ángulo de rotación viene determinada por la forma constructiva de las placas enfrentedas, obedeciendo a distintas leyes de variación, entre las que destacan la lineal, logarítmica y cuadrática corregida.

IDENTIFICACIÓN DE CAPACITORES

Vamos a disponer de un código de colores, cuya lectura varía según el tipo de condensador, y un código de marcas, particularizado en los mismos. Primero determinaremos el tipo de condensador (fijo o variable) y el tipo concreto dentro de estos.
Las principales características que nos vamos a encontrar en los capacitores van a ser la capacidad nominal, tolerancia, tensión y coeficiente de temperatura, aunque dependiendo de cada tipo traerán unas características u otras.
En cuanto a las letras para la tolerancia y la correspondencia número-color del código de colores, son lo mismo que para resistencias. Debemos destacar que la fuente más fiable a la hora de la identificación son las características que nos proporciona el fabricante.

Capacitores cerámicos tipo placa, grupo 1 y 2

Capacitores cerámicos tipo disco, grupo 1

Capacitores cerámicos tipo disco, grupo 2

Capacitores cerámicos tubulares

CÓDIGO DE COLORES


CÓDIGO DE MARCAS


Capacitores de plástico

CÓDIGO DE COLORES


CÓDIGO DE MARCAS


Capacitores electrolíticos

Estos capacitores siempre indican la capacidad en microfaradios y la máxima tensión de trabajo en voltios. Dependiendo del fabricante también pueden venir indicados otros parámetros como la temperatura y la máxima frecuencia a la que pueden trabajar.
Tenemos que poner especial atención en la identificación de la polaridad. Las formas más usuales de indicación por parte de los fabricantes son las siguientes:

Capacitores de tantalio

Actualmente estos capacitores no usan el código de colores (los más antiguos, si). Con el código de marcas la capacidad se indica en microfaradios y la máxima tensión de trabajo en voltios. El terminal positivo se indica con el signo +:

codigo de colores de las resistencias

Las resistencias de carbón comerciales tienen un marcado con bandas de colores, que nos dan su valor en ohms, así como su tolerancia (exactitud garantizada) por parte del fabricante. El código de colores consiste en una serie de bandas de color, a cada una de ellas se le asocia un número.


color

Valor numerico

Potencia de diez

Colores de las tolancias

Bandas A y B

Banda C

Banda D

Negro

0

100

Ninguno : 20%

Café

1

101

Plateado : 10%

Rojo

2

102

Dorado : 5%

Naranja

3

103

Amarillo

4

104

Verde

5

105

Azul

6

106

Morado

7

107

Gris

8

108

blanco

9

109



Para descifrar el código de colores se procede como sigue: Los dos primeros dígitos están indicados por la primera y segunda banda (bandas A y B). La banda número 3 (banda C) es un factor multiplicador expresado en potencias de diez (es el exponente de 10). La banda D representa la tolerancia, esto es, el intervalo en porcentaje dentro del cual se encuentra el valor real de la resistencia. La siguiente expresión es útil para determinar valor de cualquier resistencia de carbón o cerámica que tenga marcado un código de colores.

El valor numérico de las bandas A, B y C se encuentra en la primera columna de la tabla 1, mientras que el de la banda D (la Tolerancia) en la segunda columna de la misma tabla.
Como ejemplo ver la Figura 3, en ella se representa una resistencia con el siguiente código de colores: Banda A (café), Banda B (rojo), Banda C (naranja). No tiene la banda D. Los colores de las dos primeras bandas corresponden a los dígitos 1 y 2 y el multiplicador es 10, por lo tanto su valor es 12Ω o 12, 000 Ω. La tolerancia es 3103×±20%o bien de 2400 ohms. Esto indica que el valor real de esta resistencia se encuentra entre 14400 ohms y 9600 ohms.




jueves, 26 de marzo de 2009

sistemas operativos

Windows MS-DOS:

Comandos internos:

CD o CHDIR - Cambia el directorio actual.
CD nombre_directorio Cambia al directorio jerárquicamente inferior.
CD \ Cambia directamente al directorio raíz.
CLS - Borra la pantalla y regresa el cursor a la esquina superior izquierda .
COPY - Copia archivos.
COPY CON - Copia a un archivo el texto tecleado hasta pulsar Ctrl-Z.
DATE - Cambia o visualiza la fecha del sistema.
DEL o ERASE - Borra un archivo. Siempre y cuando el archivo no se oculte en un fichero. DEL borra el contenido del archivo y ERASE el archivo en si.
DIR - Muestra una lista con los archivos y directorios (carpetas) que se encuentran en un directorio del disco.
ECHO - Muestra un texto especificado en la pantalla.
ECHO OFF - Oculta el eco de los comandos ejecutados. Nota: se escribe como línea de código, en los archivos de proceso por lotes (.bat) y no en la línea del prompt.
EXIT - Sale de una sesión de MS-DOS.
MD o MKDIR - Crea un nuevo directorio.
PATH - Específica trayectorias, en las cuales el sistema operativo busca archivos ejecutables. Es un comando que se suele escribir en el Config.sys y en archivos de procesos por lotes.
PROMPT- Cambia la línea de visualización de la orden.
RD o RMDIR - Borra un directorio que esté totalmente vacío.
REM - Permite insertar comentarios en archivos de proceso por lotes.
REN o RENAME - Renombra archivos y directorios.
SET - Asigna valores a variables de entorno.
TIME - Visualiza o cambia la hora del reloj interno.
TYPE - Muestra el contenido de un fichero. Se utiliza, principalmente, para ver contenidos de ficheros en formato texto.
VER - Muestra la versión del Sistema Operativo.
VOL - Muestra la etiqueta del disco duro y su volumen (si lo tiene)

Comandos externos:

ATTRIB - Sin parámetros, visualiza los atributos de los directorios y archivos. Con parámetros, cambia los atributos de directorios y archivos.
Los atributos de los directorios, y los ficheros son: de lectura (r), de escritura (w), de archivo (a), oculto (h), de sistema (s). Parámetros: signos (más o menos) y letras r, w, a, y h "v". Ejemplo: Atrib +r *.* (atributo de sólo lectura, para todos los ficheros de ese directorio)
APPEND - Sirve para especificar trayectorias para ficheros de datos.
BACKUP - Ejecuta una copia de seguridad de uno o más archivos de un disco duro a un disquete.
CHKDSK - Verifica si hay errores en el disco duro. (También se puede utilizar para corregirlos con el paramentro "/F")
DELTREE - Borra un directorio sin importar que contenga subdirectorios con todos sus contenidos.
DISKCOPY - Permite hacer una copia idéntica de un disquete a otro, pertenece al grupo de las órdenes externas.
DOSKEY - Permite mantener residentes en memoria RAM las órdenes que han sido ejecutadas en el punto indicativo.
FC - Compara ficheros.
FORMAT - Permite crear la estructura lógica, en una unidad física de almacenamiento (discos duros, disquetes y unidades de almacenamiento masivo).
/s: Crea un diskette de arranque del sistema, en una unidad.
/q: Crea un formato rápido, del diskette.
/u: Formatea de forma incondicional.
Se pueden utilizar estos parámetros combinados.
KEYB - Establece el idioma del teclado según el parámetro adicionado (Ejemplo: KEYB SP para el teclado español).
LABEL - Muestra o cambia la etiqueta de la unidad de disco duro.
MEM - Muestra la memoria RAM, el espacio ocupado y el espacio libre.
MOVE - Mueve o cambia de posición un directorio y/o ficheros. También renombra subdirectorios.
SUBST - Crea una unidad lógica virtual a partir de un directorio.
TREE - Presenta en forma gráfica la estructura de un directorio.


Windows 95:
es un sistema operativo de 32 bits que permite ejecutar aplicaciones de 32 bits teóricamente más rápidas que en las aplicaciones actuales de 16 bits. Pero los sistemas operativos de 32 bits ya han estado disponibles desde hace mucho tiempo: ahí están UNIX y el Sistema Macintosh, OS/2 de IBM y el Windows NT de Microsoft. Por medio de la API Win32 de Microsoft, los programadores han podido escribir un código de 32 bits que corre por encima del Windows 3.1 de 16 bits.
Windows 95 es también un Sistema Operativo multitareas y multihilos que puede controlar varios programas a la vez. Y cada programa puede tener varios hilos concurrentes o subcomponentes que operan en forma independiente. Pero eso tampoco es nuevo. Virtualmente todos los sistemas modernos, inclusive OS/2, UNIX y Windows NT (pero excluyendo el Sistema 7 de Macintosh) dan soporte a la operación de multitareas y multihilos preferentes.

No lo que hace que Windows’95 sea el foco de tanta atención es muy simple: se trata de la mejora más importante a Windows desde que saliera la versión 3.0 en 1990. Esa versión toma un agregado de DOS mal recibido por el mercado y lo convirtió en el ambiente operativo de PC mundialmente dominante. Durante años, Microsoft ha estado trabajando para hacer de Window95 el siguiente paso lógico para los cerca de 70 millones de usuarios que se han adherido a Windows.


Windows 98:
(cuyo nombre en clave es Memphis) es un sistema operativo gráfico publicado el 25 de junio de 1998 por Microsoft y el sucesor de Windows 95. Como su predecesor, es un producto monolítico híbrido de 16 y 32 bits.+
La primera edición de Windows 98 fue designada por los números de versión internos 4.10.1998, o 4.10.1998A si había sido actualizado con el CD de seguridad de Microsoft. Windows 98 Segunda Edición está designado por los números de versión internos 4.10.2222A ó 4.10.2222B si había sido actualizado con el CD de seguridad de Microsoft. El sucesor de Windows 98 es Windows Me.



Windows XP:
(Cuyo nombre en clave inicial fue Whistler) es una línea de sistemas operativos desarrollado por Microsoft que fueron hechos públicos el 25 de octubre de 2001. Se considera que están en el mercado 400 millones de copias funcionando. Las letras "XP" provienen de la palabra 'eXPeriencia', 'eXPeriencie' en inglés.
Dispone de versiones para varios entornos informáticos, incluyendo computadoras domésticas o de negocios, computadoras portátiles, las llamadas "Tablet PC" y media center. Sucesor de Windows 2000 y Windows ME y antecesor de Windows Vista; es el primer sistema operativo de Microsoft orientado al consumidor que se construye con un núcleo y arquitectura de Windows NT y que se encuentra disponible en versiones para PC de 32 y 64 bits.
A diferencia de sus versiones anteriores presenta mejoras en la estabilidad y de la eficacia. Tiene una Interfaz gráfica de usuario (GUI) perceptiblemente reajustada, un cambio de Microsoft promovido para un uso más fácil que en las versiones anteriores. Se introdujeron nuevas capacidades de gestión de software para evitar el “DLL Hell” que plagó las viejas versiones. Es también la primera versión de Windows que utiliza la activación del producto para reducir la piratería del software, una restricción que no sentó bien a algunos usuarios. Ha sido también criticado por las vulnerabilidades de seguridad, integración de Internet Explorer, la inclusión del reproductor Windows Media Player y aspectos de su interfaz.


Windows XP SP1:
El SP1 para Windows XP fue lanzado el 9 de noviembre de 2002. La novedad más visible fue la incorporación de la utilidad Configurar acceso y programas predeterminados, para poder elegir de forma más sencilla qué programas se desea utilizar para las tareas más comunes. Otras novedades que introdujo fueron el soporte para USB 2.0 y de LBA de 48 bits, por lo que Windows XP podría soportar discos duros de más de 137 GB.
Como consecuencia de un conflicto con Sun Microsystems, Microsoft se vio forzada a sacar una revisión a este SP, llamada Service Pack 1a (SP1a), en la que se eliminaba la Máquina virtual Java de Microsoft.
El soporte de Windows XP Service Pack 1 finalizó el 10 de Octubre de 2006.

Windows XP SP2:
El 6 de agosto de 2004, Microsoft lanzó el SP2, que incluía todas las correcciones encontradas en el SP1, además de varias novedades, centradas sobre todo en dar mayor seguridad al sistema operativo. Dichas novedades son:
Un centro de seguridad, para comprobar el riesgo al que está sometido Windows XP.
Nueva interfaz del Cortafuegos de Windows XP, además de ser activado por defecto.
Añadido un mejor soporte de Wi-Fi y Bluetooth.
Incorporación a Internet Explorer de un bloqueador de popups, la capacidad de bloquear controles ActiveX, el bloqueo de las descargas automáticas y un administrador de complementos gracias a Internet Explorer 6 SP2 .
Uso de la tecnología DEP (Data Execution Prevention o Prevención de ejecución de datos) por Hardware o Software (Según si el procesador tenga o no soporte para ello).
Las actualizaciones automáticas están activadas por defecto.
El servicio Windows Messenger se desactiva por defecto.
Outlook Express bloquea los archivos adjuntos potencialmente peligrosos (.exe o .vbs).
La ventana de Agregar o quitar programas permite mostrar u ocultar las actualizaciones.
Mejoras multimedia como la inclusión del Reproductor de Windows Media 9, DirectX 9.0c, y Windows Movie Maker 2.1.
Según la Directiva de Ciclo de Vida de Productos, Microsoft retirará el soporte de Service Pack 2 el 13 de julio de 2010. Sin embargo tendrá soporte extendido hasta el año 2014.


Windows XP SP3:

Windows XP Service Pack 3 (SP3) build 5512 RTM fue lanzado para fabricantes el 21 de abril de 2008, y al público en general, a través del Centro de descargas de Microsoft y Windows Update, el 6 de mayo de 2008. Las características generales han sido publicadas por Microsoft en el documento Windows XP Service Pack 3 Overview. SP3 contiene nuevas características: actualizaciones independientes de Windows XP y características tomadas de Windows Vista.
El SP3 puede ser instalado en las versiones retail y OEM de Windows XP y tener funcionalidad completa durante 30 días sin necesidad de introducir una clave de producto. Pasado ese tiempo, se le pedirá al usuario que introduzca una clave válida y active la instalación. Las versiones de tipo licencia por volumen (VLK) necesitan también que se introduzca una clave de producto.[3]
Microsoft ha dicho que en el SP3 no se incluye Windows Internet Explorer 7; pero instalará las actualizaciones de seguridad para Internet Explorer 6 ó 7 independientemente. Algo similar es lo que ocurre con el Reproductor de Windows Media 9 Series o las versiones 10 u 11. A pesar de que los service packs anteriores han sido totalmente acumulativos, como requisito para instalar SP3 se requiere de un sistema que esté ejecutando, como mínimo, Windows XP Service Pack 1. Sin embargo, es posible integrar SP3 en cualquier edición de Windows XP, incluida la versión original RTM, sin ningún problema. SP3 también contiene actualizaciones de componentes del sistema operativo para Windows XP Media Center Edition y Windows XP Tablet PC Edition; incluye actualizaciones de seguridad para .NET Framework 1.0 y 1.1, que son incluidas con estas SKUs de Windows XP. SP3 no incluye actualizaciones para la aplicación Windows Media Center contenida en Windows XP Media Center Edition 2005. Tampoco incluye actualizaciones de seguridad del Reproductor de Windows Media 10.
De acuerdo con informaciones reveladas por Microsoft y datos obtenidos de Internet, hay un total de 1.073 arreglos en SP3.
Según las declaraciones de Microsoft, el soporte para el SP3 finalizará en abril de 2014.



Windows Vista:
Windows Vista es una línea de sistemas operativos desarrollada por Microsoft para ser usada en computadoras de escritorio, portátiles, Tablet PC y centros multimedia. Antes de ser anunciado oficialmente el 22 de julio de 2003 su nombre en código fue "Longhorn".
El proceso de desarrollo terminó el 8 de noviembre de 2006 y en los siguientes tres meses fue entregado a los fabricantes de hardware y software, clientes de negocios y canales de distribución. El 30 de enero de 2007 fue lanzado mundialmente y fue puesto a disposición para ser comprado y descargado desde el sitio Web de Microsoft.
La aparición de Windows Vista viene más de 5 años después de la introducción de su predecesor, Windows XP, es decir el tiempo más largo entre dos versiones consecutivas de Microsoft Windows. La campaña de lanzamiento fue incluso más costosa que la de Windows 95, ocurrido el 25 de agosto de 1995, debido a que incluye además a otros productos como Microsoft Office 2007, y Exchange Server 2007. Actualmente Windows Vista ya tiene sucesor, llamado Windows 7, aunque éste todavía no se comercializa al público.
El 26 de febrero de 2006, la compañía Microsoft anunció que la próxima versión del nuevo Windows incluiría 6 ediciones.[3] Todas las versiones están disponibles para arquitecturas (procesadores) de 32 y 64 bits, a excepción de Microsoft Windows Vista Starter Edition, que sólo estará disponible en 32 bits, ya que es una edición de menores prestaciones.

Microsoft Windows Vista Starter Edition
Microsoft Windows Vista Home Basic
Microsoft Windows Vista Home Premium
Microsoft Windows Vista Business
Microsoft Windows Vista Enterprise
Microsoft Windows Vista Ultimate.



Windows 7:
Windows 7 (anteriormente conocido con nombre código Blackcomb, y luego Vienna) será la próxima versión de Microsoft Windows, sucesor de Windows Vista. Creado sobre un kernel basado en el de Windows Server 2008 y permitirá la compatibilidad hacia atrás mediante la virtualización.
Al tener 6.1 como código de versión, mucha gente piensa que éste será una actualización menor con respecto a Windows Vista, cuyo código de versión es 6.0, pero esto se debe únicamente para evitar problemas de compatibilidad, ya que Windows 7 será un significativo avance evolutivo y una edición mayor de los sistemas operativos de Microsoft.
Este sistema operativo comenzó inmediatamente después del lanzamiento de Windows Vista. El 20 de julio de 2007, se reveló que este sistema operativo es llamado internamente por Microsoft como la versión "7". Hasta el momento, la compañía declaró que Windows 7 tendrá soporte para plataformas de 32 bits y 64 bits, aunque la versión para servidor (que sucedería a Windows Server 2008) será exclusivamente de 64 bits.
El 13 de octubre del 2008 fue anunciado que "Windows 7" además de haber sido uno de los tantos nombres código, sería el nombre oficial de este nuevo sistema operativo. Mike Nash dijo que esto se debía a que Windows 7 apunta a la simplicidad, y el nombre debe reflejarlo.
Ya para el 7 de enero del 2009, la versión beta se publicó para suscriptores de Technet y MSDN. El 9 de enero, se habilitó brevemente al público general mediante descarga directa en la página oficial, pero hubo problemas con los servidores que obligaron a retirar la posibilidad de descarga hasta horas más tarde después de añadir más servidores y, además, cambiaron el límite de 2,5 millones de personas como disculpa por el problema del retraso, el nuevo límite fue hasta el 10 de febrero del 2009.



Windows Server 2003:

Windows Server 2003 es un sistema operativo de propósitos múltiples capaz de manejar una gran gama de funciones de servidor, en base a sus necesidades, tanto de manera centralizada como distribuida. Algunas de estas funciones del servidor son:
· Servidor de archivos e impresión.
· Servidor Web y aplicaciones Web.
· Servidor de correo.
· Terminal Server.
· Servidor de acceso remoto/red privada virtual (VPN).
· Servicio de directorio, Sistema de dominio (DNS), y servidor DHCP.
· Servidor de transmisión de multimedia en tiempo real (Streaming).
· Servidor de infraestructura para aplicaciones de negocios en línea (tales como planificación de recursos de una empresa y software de administración de relaciones con el cliente).
Sus características más importantes son:
Sistema de archivos NTFS:
cuotas
cifrado y compresión de archivos, carpetas y no unidades completas.
permite montar dispositivos de almacenamiento sobre sistemas de archivos de otros dispositivos al estilo unix
Gestión de almacenamiento, backups... incluye gestión jerárquica del almacenamiento, consiste en utilizar un algoritmo de caché para pasar los datos menos usados de discos duros a medios ópticos o similares más lentos, y volverlos a leer a disco duro cuando se necesitan.
Windows Driver Model: Implementación básica de los dispositivos más utilizados, de esa manera los fabricantes de dispositivos sólo han de programar ciertas especificaciones de su hardware.
ActiveDirectory Directorio de organización basado en LDAP, permite gestionar de forma centralizada la seguridad de una red corporativa a nivel local.
Autentificación Kerberos5
DNS con registro de IP's dinámicamente
Políticas de seguridad.



Windows Server 2008:
Windows Server 2008 es el nombre del sistema operativo para servidores de Microsoft. Es el sucesor de Windows Server 2003 distribuido al público casi cinco años antes. Al igual que Windows Vista, Windows Server 2008 se basa en el núcleo Windows NT 6.0.
Fue conocido como Windows Server "Longhorn" hasta el 16 de mayo de 2007, cuando Bill Gates, el presidente de Microsoft anunció su título oficial (Windows Server 2008) durante su discurso de apertura en WinHEC.
La beta 1 fue lanzada el 27 de julio de 2005. La beta 2 fue anunciada y lanzada el 23 de mayo de 2006 en WinHEC 2006 y la beta 3 fue lanzada al público el 25 de abril de 2007. Su lanzamiento fue el 27 de febrero de 2008.
Hay algunas diferencias (algunas sutiles y otras no tanto) con respecto a la arquitectura del nuevo Windows Server 2008, que pueden cambiar dramáticamente la manera en que se usa este sistema operativo. Estos cambios afectan a la manera en que se gestiona el sistema hasta el punto de que se puede llegar a controlar el hardware de forma más efectiva, se puede controlar mucho mejor de forma remota y cambiar de forma radical la política de seguridad. Entre las mejoras que se incluyen, están:
Nuevo proceso de reparación de sistemas NTFS: proceso en segundo plano que repara los archivos dañados.
Creación de sesiones de usuario en paralelo: reduce tiempos de espera en los Terminal Services y en la creación de sesiones de usuario a gran escala.
Cierre limpio de Servicios
Sistema de archivos SMB2: de 30 a 40 veces más rápido el acceso a los servidores multimedia.
Address Space Load Randomization (ASLR): protección contra malware en la carga de controladores en memoria.
Windows Hardware Error Architecture (WHEA): protocolo mejorado y estandarizado de reporte de errores.
Virtualización de Windows Server: mejoras en el rendimiento de la virtualización.
PowerShell: inclusión de una consola mejorada con soporte GUI para administración.
Server Core: el núcleo del sistema se ha renovado con muchas y nuevas mejoras
La mayoría de las ediciones de Windows Server 2008 está disponible en x86-64 (64 bits) y x86 (32 bits). Windows Server 2008 para sistemas basados en Intel Itanium conocida como "IA-64". La versión IA-64 se ha optimizado para volumen de trabajo de alta escenarios como servidores de bases de datos y línea de negocio (LOB).Como usufructo no está optimizado para su uso como servidor de archivos o servidor de medios. Bill Gates y Microsoft han anunciado que Windows Server 2008 es el último sistema operativo para servidores disponible en 32 bits. Windows Server 2008 está disponible en las ediciones que figuran a continuación, similar a Windows Server 2003.
Windows Server 2008 Standard Edition (x86 y x64)
Windows Server 2008 Enterprise Edition (x86 y x64)
Windows Server 2008 Edición de datos (x86 y x64)
Windows Server 2008 HPC
Windows Server for Web 2008 (x86 y x64)
Windows Storage Server 2008 (x86 y x64)
Windows Small Business Server 2008 (código es "Cougar") (x64) para las pequeñas empresas
Windows Business Server 2008
Windows Server 2008 Vista para sistemas basados en Itanium.
Futuras Versiones de Windows Server 2008
Windows Server 2008 SP1 (Service Pack 1)
Windows Server 2008 SP2 (Service Pack 2)
Windows Server 2008 R2 (Service Pack 3)


Linux GNU:

Linux es un sistema operativo diseñado por cientos de programadores de todo el planeta, aunque el principal responsable del proyecto es Linus Tovalds. Su objetivo inicial es propulsar el software de libre distribución junto con su código fuente para que pueda ser modificado por cualquier persona, dando rienda suelta a la creatividad. El hecho de que el sistema operativo incluya su propio código fuente expande enormemente las posibilidades de este sistema. Este método también es aplicado en numerosas ocasiones a los programas que corren en el sistema, lo que hace que podamos encontrar muchísimos programas útiles totalmente gratuitos y con su código fuente. Y la cuestión es que, señores y señoras, Linux es un sistema operativo totalmente gratuito.
Mi máquina corre Linux, y puedo asegurar que es uno de los sistemas que más aprovecha mi computadora, es decir, con el consigo ejecutar tareas mucho más rápido que con otros sistemas operativos comerciales. Y es que Linux no requiere grandes prestaciones para funcionar.
Las funciones principales de este magnífico sistema operativo son:
·Sistema multitarea En Linux es posible ejecutar varios programas a la vez sin necesidad de tener que parar la ejecución de cada aplicación.
·Sistema multiusuario Varios usuarios pueden acceder a las aplicaciones y recursos del sistema Linux al mismo tiempo. Y, por supuesto, cada uno de ellos puede ejecutar varios programas a la vez (multitarea).
·Shells programables Un shell conecta las ordenes de un usuario con el Kernel de Linux (el núcleo del sistema), y al ser programables se puede modificar para adaptarlo a tus necesidades. Por ejemplo, es muy útil para realizar procesos en segundo plano.
·Independencia de dispositivos Linux admite cualquier tipo de dispositivo (módems, impresoras) gracias a que cada una vez instalado uno nuevo, se añade al Kernel el enlace o controlador necesario con el dispositivo, haciendo que el Kernel y el enlace se fusionen. Linux posee una gran adaptabilidad y no se encuentra limitado como otros sistemas operativos.
·Comunicaciones Linux es el sistema más flexible para poder conectarse a cualquier ordenador del mundo. Internet se creó y desarrollo dentro del mundo de Unix, y por lo tanto Linux tiene las mayores capacidades para navegar, ya que Unix y Linux son sistemas prácticamente idénticos. Con linux podrá montar un servidor en su propia casa sin tener que pagar las enormes cantidades de dinero que piden otros sistemas.
Características de Linux
.multitarea: varios programas (realmente procesos) ejecutándose al mismo tiempo.
·multiusuario: varios usuarios en la misma máquina al mismo tiempo (y sin licencias para todos).
·multiplataforma: corre en muchas CPUs distintas, no sólo Intel.
·funciona en modo protegido 386.
·tiene protección de la memoria entre procesos, de manera que uno de ellos no pueda colgar el sistema.
·carga de ejecutables por demanda: Linux sólo lee de disco aquellas partes de un programa que están siendo usadas actualmente.
·política de copia en escritura para la compartición de páginas entre ejecutables: esto significa que varios procesos pueden usar la misma zona de memoria para ejecutarse. Cuando alguno intenta escribir en esa memoria, la página (4Kb de memoria) se copia a otro lugar. Esta política de copia en escritura tiene dos beneficios: aumenta la velocidad y reduce el uso de memori.
·memoria virtual usando paginación (sin intercambio de procesos completos) a disco: una partición o un archivo en el sistema de archivos, o ambos, con la posibilidad de añadir más áreas de intercambio sobre la marcha (se sigue denominando intercambio, es en realidad un intercambio de páginas). Un total de 16 zonas de intercambio de 128Mb de tamaño máximo pueden ser usadas en un momento dado con un límite teórico de 2Gb para intercambio.
·la memoria se gestiona como un recurso unificado para los programas de usuario y para el caché de disco, de tal forma que toda la memoria libre puede ser usada para caché y éste puede a su vez ser reducido cuando se ejecuten grandes programas.
·librerías compartidas de carga dinámica (DLL's) y librerías estáticas también, por supuesto.
.se realizan volcados de estado (core dumps) para posibilitar los análisis post-mortem, permitiendo el uso de depuradores sobre los programas no sólo en ejecución sino también tras abortar éstos por cualquier motivo.
·casi totalmente compatible con POSIX, System V y BSD a nivel fuente.
·mediante un módulo de emulación de iBCS2, casi completamente compatible con SCO, SVR3 y SVR4 a nivel binario.
·todo el código fuente está disponible, incluyendo el núcleo completo y todos los drivers, las herramientas de desarrollo y todos los programas de usuario; además todo ello se puede distribuir libremente. Hay algunos programas comerciales que están siendo ofrecidos para Linux actualmente sin código fuente, pero todo lo que ha sido gratuito sigue siendo gratuito.
·control de tareas POSIX.
·pseudo-terminales (pty's).
·emulación de 387 en el núcleo, de tal forma que los programas no tengan que hacer su propia emulación matemática. Cualquier máquina que ejecute Linux parecerá dotada de coprocesador matemático. Por supuesto, si tu ordenador ya tiene una FPU (unidad de coma flotante), será usada en lugar de la emulación, pudiendo incluso compilar tu propio kernel sin la emulación matemática y conseguir un pequeño ahorro de memoria.
·soporte para muchos teclados nacionales o adaptados y es bastante fácil añadir nuevos dinámicamente.
·consolas virtuales múltiples: varias sesiones de login a través de la consola entre las que se puede cambiar con las combinaciones adecuadas de teclas (totalmente independiente del hardware de video). Se crean dinámicamente y puedes tener hasta 64. soporte para varios sistemas de archivo comunes, incluyendo minix-1, Xenix y todos los sistemas de archivo típicos de System V, y tiene un avanzado sistema de archivos propio con una capacidad de hasta 4 Tb y nombres de archivos de hasta 255 caracteres de longitud.

Mac OS:

El Sistema Operativo Mac OS no fue la primer interfaz gráfica, pero fue la primera con gran éxito por su accesibilidad de precio. Para aquellos años en el mercado lo que existía era La Xerox Alto con un costo de 32,000 dólares, la Xerox Star costó 16,600 dólares y la Apple Lisa con un precio de 10,000 dólares. El nombre de esta Apple fue un capricho de Steve Jobs por su hija. Este Sistema 1 venía incluido en el primer Macintosh, que tenía un precio de 2,500 dólares.




Apache HTTP Server:
Apache HTTP Server es un servidor web que forma parte del llamado Proyecto Apache, un grupo formado por programadores voluntarios de todo el mundo que trabajan unidos en un mismo proyecto de software.
Entre todos estos programadores y gracias también a la contribución de ideas, sugerencias, código y documentación por parte de cientos de usuarios, el Proyecto Apache ha desarrollado diversas aplicaciones entre las que se encuentra este servidor web.
El Apache HTTP Server es un servidor robusto, de múltiples características y funcionalidades y de código libre. Esta versión está especialmente diseñada para trabajar con Windows, aunque Apache trabaje al máximo nivel en sistemas Unix.
Para utilizar Apache HTTP Server necesitas:
Sistema operativo: Win95/98/98SE/Me/2000/NT/XP/Vista



Unix:
Es un sistema operativo de tiempo compartido, controla los recursos de una computadora y los asigna entre los usuarios. Permite a los usuarios correr sus programas. Controla los dispositivos de periféricos conectados a la máquina.
Posee las siguientes características:
- Es un sistema operativo multiusuario, con capacidad de simular multiprocesamiento y procesamiento no interactivo.
- Está escrito en un lenguaje de alto nivel: C.
- Dispone de un lenguaje de control programable llamado SHELL.
- Ofrece facilidades para la creación de programas y sistemas y el ambiente adecuado para las tareas de diseños de software.
- Emplea manejo dinámico de memoria por intercambio o paginación.
- Tiene capacidad de interconexión de procesos.
- Permite comunicación entre procesos.
- Emplea un sistema jerárquico de archivos, con facilidades de protección de archivos, cuentas y procesos.
- Tiene facilidad para redireccionamiento de Entradas/Salidas.
- Garantiza un alto grado de portabilidad.
El sistema se basa en un Núcleo llamado Kernel, que reside permanentemente en la memoria, y que atiende a todas las llamadas del sistema, administra el acceso a los archivos y el inicio o la suspensión de las tareas de los usuarios.
La comulación con el sistema UNIX se da mediante un programa de control llamado SHELL. Este es un lenguaje de control, un intérprete, y un lenguaje de programación, cuyas características lo hacen sumamente flexible para las tareas de un centro de cómputo. Como lenguaje de programación abarca los siguientes aspectos:
- Ofrece las estructuras de control normales: secuenciación, iteración condicional, selección y otras.
- Paso de parámetros.
- Sustitución textual de variables y Cadenas.
- Comunicación bidireccional entre órdenes de shell.
El shell permite modificar en forma dinámica las características con que se ejecutan los programas en UNIX:
Las entradas y salidas pueden ser redireccionadas o redirigidas hacia archivos, procesos y dispositivos;
Es posible interconectar procesos entre sí.
Diferentes usuarios pueden "ver" versiones distintas del sistema operativo debido a la capacidad del shell para configurar diversos ambientes de ejecución. Por ejemplo, se puede hacer que un usuario entre directamente a su sección, ejecute un programa en particular y salga automáticamente del sistema al terminar de usarlo.